

Maritime Cyber Security - The Challenges Ahead

CMMI – Monthly Lecture Meeting 16th Jan 2025

(Delivered by Capt Viraf Chichgar – Fleet Management Training Institute)

(*Material credit / ownership of data within belongs to respective source)

Major Marine Attacks - 'Not Petya' !

- 2017 Global Attack which cost a Global Shipping and Logistic MNC, well over 300 Million USD, and associated partners 400 million USD. Global losses were estimated at 10 Billion USD.
- Within **10 minutes**, <u>49000 Computers</u>, <u>6200 servers</u>, <u>1200 applications</u>, and all IP-based equipment were unusable. Most of these were rendered obsoleted and destroyed.
- Servers with synched domain controllers were damaged in all countries, leading to <u>no access</u> due to the absence of verification and authentication.
- Hundreds of IT professionals and some <u>*GHANIAN luck</u>, allowed limp–back restoration after 10 days.
- (* The Ghana office had a black-out just before the attack and it's system image survived due to luck, as just this one domain server did not sync with the other infected ones)

A.I DRIVEN CYBER ATTACKS: Attack Surface - Ports

Fun Fact !

The average number of cyber attacks targeting the Port of Los Angeles in 2023 was around <u>63 million / per month!!</u>

A majority of Cyber Attack attempts are now driven by A.I supported technology.

Vessel NUC; But Under Remote Command !

- Hackers took <u>'full control'</u> of container ship's navigation systems for <u>10 hours</u>
- In February 2017 hackers reportedly took control of the navigation systems of a German-owned 8,250 TEU container vessel en-route from Cyprus to Djibouti for 10 hours.
- Suddenly, the captain could not manoeuvre, an industry source who did not wish to be identified told Safety At Sea (SAS). <u>"The OT system of the vessel was completely hacked."</u>
- While details are limited, according to the source, <u>the 10-hour attack</u> was carried out by <u>'pirates'</u> who gained full control of the vessel's navigation system, intending to steer it to an area where they could board and take over.
- The crew attempted to regain control of the navigation system but had <u>to bring IT experts on board</u>, who eventually managed to get them running again after hours of work.

Article credit Tanya Blake / Editor Safety at Sea

CYBER THREAT EXPOSURE – OT AND IT

Information Technology (IT):

The application of science to the processing of data according to programmed instructions in order to derive results.

Operational Technology (OT):

A hardware and software that detects or causes a change through the direct monitoring and/or control of physical devices, processes and events in the enterprise. It includes devices, sensors, software and associated networking that monitor and control onboard systems.

CYBER THREAT EXPOSURE – OT AND IT

Information Technology (IT)

- Administration, accounts, crew lists, etc.
- Planned maintenance
- Spares management and requisitioning
- Electronic manuals and certificates
- Permits to work
- Charter party, notice of readiness, etc.

Operation Technology (OT)

- PLCs, SCADA
- On-board measurement and control
- ECDIS, GPS
- Remote support for engines
- Data loggers
- Engine and cargo control
- Dynamic positioning, etc.

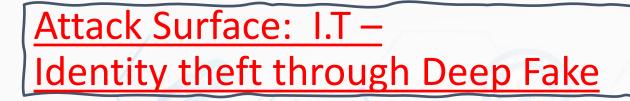
At risk:

Mainly

finance

and

reputation

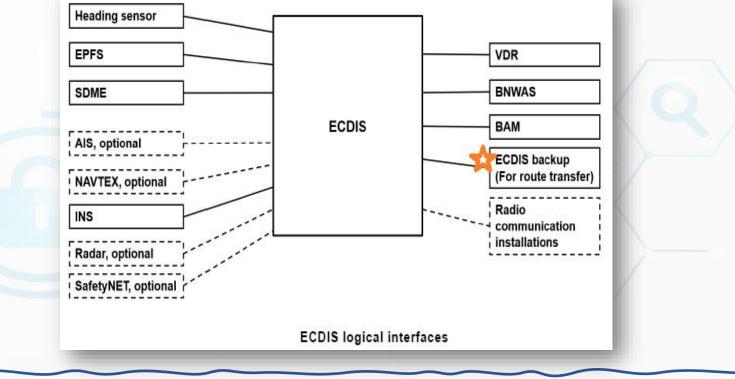

At risk:

Life, property & environment +

> all of the above

Source Credit : DNV

URL: <u>https://training.fleetship.com/documents/CS_Seminar/Deepfake_Singularity.mp4</u>


<u>(Scanning this QR Code or Clicking on the URL will allow you to playback video, which was hosted on a secure site,</u> when this document was created. The ownership of this video belongs / remains with DEIP NEP)

Source Credit : YouTube/DEIP NEP

Attack Surface: O.T - Nautical - ECDIS

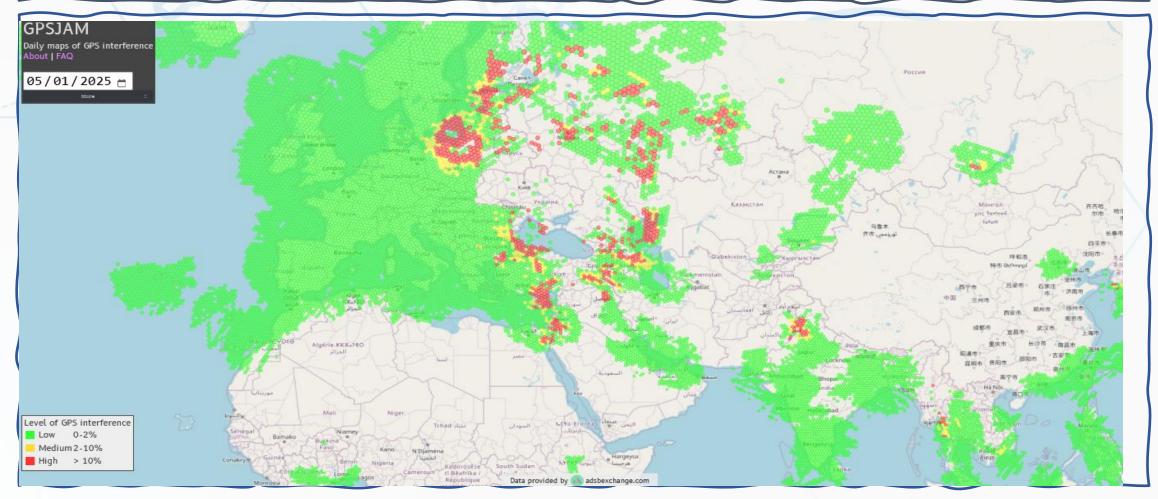
It is a prerequisite that the **route plan** has been transferred to the back-up device **prior to the departure** and **after reassignment of the route plan** in order to enable a safe takeover when ECDIS fails.

ECDIS – Logical Interfaces

- There are **no IMO or IEC requirements** for a full-time wired interface between main and backup ECDIS.
- The logical interface (wired or non-wired) that IEC tests for, is limited to Route Exchange only.
- **Despite the above,** ENC (*IHO standards*) and AIO (*Non-IHO standards*) are imported in on a weekly basis, it is routed in from 'vendor/distributor systems', typically through the Back of Bridge Computer, through a non-standardized software.
- Typically, two or more ECDIS and the BoB Computer are being kept in the wired interface, and weekly ENCs updates are being synchronized through the wire interface, despite no requirement
- Process of weekly updating has no regulatory guideline some vessels are updating it simultaneously, instead of staggered updating, increasing risk of simultaneous failure of all ECDIS
- Incase of malware, incompatibility or general errors due to a large volume of data being simultaneously synched on aging computers, ECDIS machines are at times hanging or entirely crashing, simultaneously!

ECDIS Cyber Security – the Challenges!

- No Annual Service is required. No software upgrade is required if your software was good as of 1st Sept 2017, then you are considered 'good enough'
- Some ECDIS models 'meeting current requirements' were OUT of MANUFACTURE in 2012 !
- No regulation compelling 'staggered updating of ENCs in multiple ECDIS'
- No regulation requiring any standard for the BoB Back of Bridge Software.
- MIOS third party like SPOS and Guide to Port Entry can be overlaid and can cause glitches.
- 'AIR GAPS': The Catch 22 Situation
- IMO is yet to develop guidance to establish a framework for data distribution and global Internet Protocol (IP)-based connectivity to realize the full potential of S-100 capable ECDIS

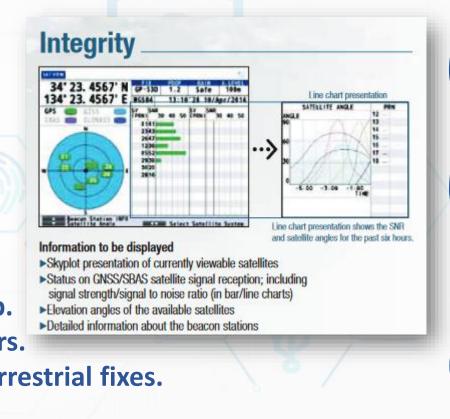


<u>Attack Surface: O.T – Machinery: A.I Based 'On-top' Propulsion</u> <u>Optimizer</u>

- An A.I based 'on-top' unit which controls R.P.M as well as Pitch of C.P.P propellors.
- Load on engine/propulsion is monitored, then fed through a cloud connection and via IoT, adjustment commands are given back to the system.
- Same is already being fitted on merchant vessels, to improve emissions.
 Concerns:
- No quality or regulatory standards are available on maker's website or over email query.
- While services are marketed by a Scandinavian company, servers could be elsewhere.
- No information on Cybersecurity standards is available on website or over email query.
- Fitment was done with minimal MoC. The above certification status was unknown.
- No **S.O.P drafted** to monitor, control or specific situations or contingency procedures as to when and how to override commands.
- Essentially, propulsion control is provided external to the vessel, and MoC / RA is done retrospectively.

Attack Surface: External systems– GPS SPOOFING AND JAMMING

Source Credit :www.gpsjam.org


Attack Surface: External systems– GPS SPOOFING AND JAMMING

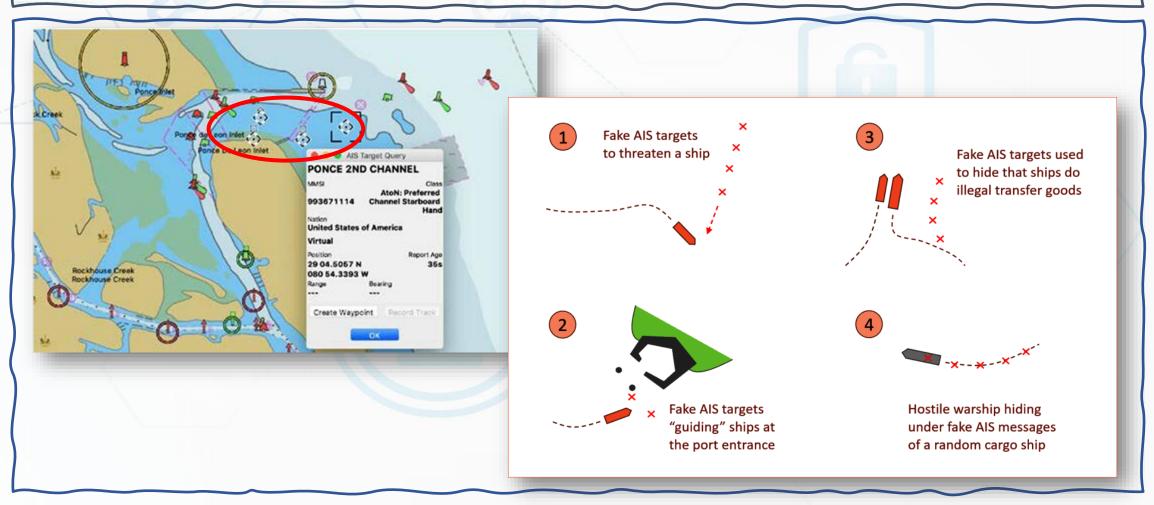
Jamming causes the GPS receiver to DIE,

> Spoofing causes the GPS receiver to LIE!

Mitigating measures available:

Anti-Spoofing / Anti-Jamming equipment on the ship.
 Using Multi-Frequency / Multi- constellation receivers.
 Traditional methods of GPS position verification – terrestrial fixes.

Source Credit : Screenshot from www.furuno.com

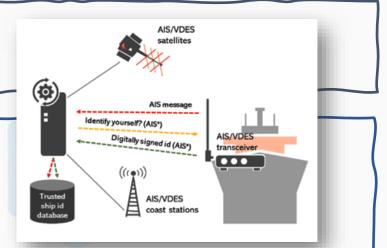

Attack Surface: External - AIS SPOOFING

Challenges with AIS

- Lack of validity checks: No geographic validation information meaning that it is possible for a bad actor to send an AIS message from any location while purporting to be in another location.
- Lack of timing checks: AIS messages contain no time stamp verification information meaning that a cyber-attacker can replay valid AIS information at a later time of their choosing.
- Lack of authentication: The AIS protocol provides no mechanism to authenticate the sender, thus anyone with the ability transmit an AIS packet can impersonate any other AIS device.
- Lack of integrity checks: AIS messages are transmitted in an unencrypted and unsigned form; this makes it simple for an interloper to intercept and/or modify transmissions

AIS SPOOFFED: FALSE – TARGET & AtoN CHANNEL


Source Credit : STERNULA AS/ Gary Kessler Associates


AIS Spoofing – Mitigating Measures

Mitigating measures planned:

- MSC 109 approved a revision of the performance standards (AIS)
 (Resolution MSC.74(69)) to prevent tampering of a ship's information.
- IMO's Sub-Committee on Navigation, Communications, Search and Rescue are proposing amendments to Chapter V/19.2.4 and finalizing of performance standards for VDES will in NCSR 12 in May 2025
- VDES is a digital communication system that operates over the very high frequency (VHF) band to provide secure and reliable data exchange. (IALA is also working on Guidelines for VDES).
- VDES VHF Data Exchange Scheme includes 4 components:
- 1. Automatic identification system (AIS)
- 2. Application specific message (ASM)
- 3. Terrestrial component for VHF data exchange (VDE-TER)
- 4. Satellite component for VHF data exchange (VDE-SAT)

Source Credit : IALA / IMO – MSC & NCSR / STERNULA AS

Challenges for the Industry...... 01

- Aging assets / Aging OT never designed to work without Air Gaps. Equipment was
 - not designed to be coupled with internet and software is almost never upgraded.
- Cyber Security is a newer concept for ships; it's expensive and there is lack of investment.
- Cyber Experts are good at IT protection; are not that familiar with ship OT protection.
- IT used in shore-based PMS and Accounting system is antiquated.
- Internet provided onboard is the 'cheapest' and may not be the most secure.

Challenges for the Industry...... 02

- Navigation / communication / cargo /ballast / propulsion / steering / emission
- control all are poorly protected OT, in current standards
- State-sponsored IT attackers and Hacktivist have increased.
- Russia-Ukraine conflict, Iran, Taiwan, China and similar geo-political tensions have raised the ante for cyber-terrorism.
- Ransomware is not just profitable but easier to execute, thanks to Bitcoin and Cryptocurrencies.
- Cyber awareness and Cyber Security Training are insufficient and not mandatory.

Challenges for the Industry...... 03

 While cyber risk insurers MAY now provide cover for business, interruption arising from an IT system failure, policies, generally exclude bodily injury and property damage – even loss of use in some instances.

Clause CL380, which has been inserted into the majority of marine policies since
 2003, removes cover for the use of IT systems as a means of inflicting harm. This
 exclusion removes all cover for a cyber-attack leaving a client completely uninsured,
 including any associated business interruption loss.

Insurance Coverage

					Cove	erage					
Participant	CL380 buyback	Hull Physical Damage	Vessel Loss of Hire	Hull War "	Ports & Terminals	Defence & Remediation	Data Loss & Recovery	Crime	Business Interruption	Terrorism	Comment
А		-	-	-	-	-	Y	-		-	No take up, coverage too narrow
в		-	-	-	-	Y	-	Y		-	No take up too narrow
С	Y										Low take up; Aggregate limit across all insureds
D				Y							Limited to "war" only
E								Y			\$1m only as part of their War K&R product
F	Y			Y		Y	Y	Y	Y	Y	Cover available, but not together. (SME focused)
G		Y	Y			Y	Y	Y			The leading credible proposition
н	Y			Y		Y	Y	Y		Y	Cover available, but not together. (SME focused)
ASTAARA	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	

<u>Reference material for today's session.</u>

https://training.fleetship.com/documents/CS_Seminar/Reference_Documents.zip

<u>(Scanning this QR Code or Clicking on the URL will allow you to download a zipped folder which contains PDF</u> files with reference documents which was hosted on a secure site, when this document was created. The source credit / ownership for these documents are indicated in individual documents and may be redundant or replaced by individual owner, in the future)

Index Reference regulations, documents and regulations:

- 1. IACS UR-E26-Rev.1-Nov-2023-Cyber Resilience of Ships
- 2. IACS UR-E27-Rev.1-Sep-2023-Cyber Resilience of Onboard Systems and equipment
- 3. IACS Recomm. 171-1 Incorporating Cyber Risk Management into SMS
- 4. IACS UR-E26 / E27 Summary by INMARSAT and CLASS NK
- 5. Class NK Cyber Security Management System for Ships
- 6. IR Class Guidelines on Maritime Cyber Security
- 7. DNV Maritime Cybersecurity Priority 2024/25
- 8. International Association of Ports and Harbours Cybersecurity-Guidelines
- 9. MSC 98 Resolution (428) Maritime Cyber Security in SMS

Reference regulations, documents and regulations:

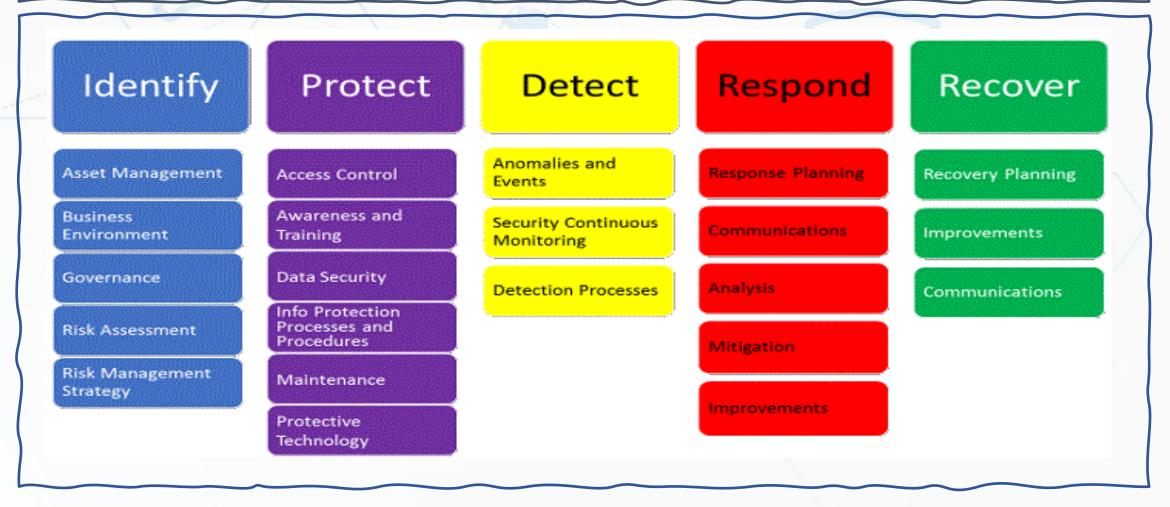
- 10. MSC 104-FAL.1-Circ.3-Rev.2 Guidelines on Maritime Cyber Risk Management
- 11. MSC 108-06-FAL.1 Circ. 3- Proposed Revision to Rev.2 Guidelines on Maritime Cyber

Risk-Management

- 12. MSC 108-100 Proposed modifications to the draft amendments to the STCW Code
- 13. MSC 109-19-3 Proposal for a new output to realize the full potential of the S-100 ECDIS
- 14. FAL 47 Circ.42-Rev.3 Guidelines for setting up Maritime Single Window
- 15. FAL 49 Agenda for Meeting of 100325
- 16. IALA Guidance 1117-Ed3.0-VHF-Data-Exchange-System-VDES.
- **17.** State of AI in Cyber Security by Dark Trace
- 18. The Guideline on Cyber Security on board ships Ver.5.0 (Industry)

Tools that may help IMO, IACS, CLASS, BIMCO, OCIMF, INTERTANKO, INTERTANKO, IALA, IAPH. IEC, ISO, NIST – all provide a lot of guidance on the subject. Strong shore-based IT team, focussed on both IT and OT.

- Regular updates to OT and IT software.
- Investing in strong cybersecurity tools / software.
- AI based software to strengthen Cyber Resilience (like Darktrace)
- Having IT /OT System Audits by qualified third party C.I.S.A or by Class



Tools that may help

- Keeping proper/safe back-ups and recovery systems.
- Considering double-redundancy with lesser automated back-ups.
- Having a strong Cyber Resilience policy and culture in your organisation.
- Have regular cyber-awareness and training programmes.
- Insist on a large budget allocation towards Cybersecurityit's a NECESSARY AND UNAVOIDABLE INVESTMENT

5 Sub Goals of Cyber Security

Source Credit : National Institute of Standards of Technology

Typical Class Survey responsibilities

		241	1000	
	 \langle	$\overline{\langle}$	C	\rightarrow
				K.
				- /
				(
				1

E26					
Ship's lifecycle	Design & construction	>	Commissioning	>	Operational
Responsibility	Shipbuilder		Shipbuilder		Ship owner
	Zones and conduit diagram				
Documents and demonstration	Vessel asset inventory		Ship cyber resilience test procedure		Ship cyber security and resilience program
	Cyber security design description				
^	System asset inventory		Description of security capabilities		System maintenance plan
E27	System topology diagrams		System configuration guidelines		System document to support incident response and recovery

Source Credit : INMARSAT / Class NK

And if you feel safe, please remember that these establishments got hacked by a 15-year-old!!

